

Fig. 1. Projection de la structure le long de c.

Discussion. Cette structure est caractérisée par la présence d'une hélice d'atomes d'arsenic parallèle à l'axe c. La liaison As—As, la plus courte de la structure, est sensiblement constante (2,42 à 2,43 Å) et comparable à celles observées dans d'autres combinaisons polyanioniques de l'arsenic: 2,43 Å dans CdAs₂ (Horn & Lukaszewicz, 1968) et 2,40 Å dans Cd₄As₂I₃ (Gallay, 1975). Ces différentes hélices sont reliées entre elles par les atomes de cadmium.

Chaque atome d'arsenic est entouré par les deux atomes d'arsenic de l'hélice et par deux atomes de cadmium, ces quatre voisins constituant un tétraèdre très déformé. Chaque atome de cadmium est pentacoordonné, il est au centre d'une bipyramide déformée constituée par trois atomes d'arsenic et par deux atomes d'iode. Les liaisons varient de 2,62 à 2,74 Å pour Cd–As et de 2,98 à 3,43 Å pour Cd–I, elles sont comparables respectivement aux liaisons observées dans CdAs₂ (2,69 Å; Horn & Lukaszewicz, 1968) et CdI₂ (2,99 Å; Wyckoff, 1963).

Chaque atome d'iode est entouré par quatre atomes de cadmium, l'ensemble étant sensiblement coplanaire. Dans les files Cd-I-Cd-I... les angles I-Cd-I valent 167 et 170°.

Il n'y a aucune liaison Cd-Cd ni aucune liaison As-I, les plus courtes distances Cd-Cd et As-I étant respectivement de 3,90 et 3,88 Å. Formellement, le polyanion a une charge *n* fois négative. Si l'on applique la formule classique des composés de valence (Parthé, 1972) on trouve que le nombre de liaisons anion-anion par anion est de 1,5 ce qui correspond bien à deux liaisons anion-anion par arsenic, l'iode ne participant pas à ces liaisons polyanioniques.

Références

- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- DONOHUE, P. C. (1972). J. Solid State Chem. 5, 71-74.
- DONOHUE, P. C. (1973). J. Solid State Chem. 6, 587-589.
- GALLAY, J. (1975). Acta Cryst. B31, 2274-2276.
- HORN, J. & LUKASZEWICZ, K. (1968). Rocz. Chem. 42, 993– 999.
- PARTHÉ, E. (1972). Cristallochimie des Structures Tétraédriques. New York: Gordon & Breach.
- WYCKOFF, R. W. G. (1963). Crystal Structures, Tome 1, 2e éd. New York: Wiley-Interscience.

Acta Cryst. (1979). B35, 2199-2201

Tungsten Dioxide: Structure Refinement by Powder Neutron Diffraction

By D. J. PALMER AND P. G. DICKENS

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX 1 3QR, England

(Received 19 May 1979; accepted 12 June 1979)

Abstract. WO₂, monoclinic, space group $P2_1/c$, a = 5.563 (2), b = 4.896 (3), c = 5.663 (2) Å, $\beta = 120.47$ (1)° (298 K). The structure has been refined by profile analysis of powder neutron diffraction data at room temperature. It is a monoclinically distorted rutile structure with alternate W–W lengths of 2.475 and 3.096 Å along the rutile chains.

0567-7408/79/092199-03\$01.00

Introduction. WO_2 exists as a line phase at ambient pressures over the temperature range 273 < T < 1803 K (*Phase Diagrams for Ceramists*, 1969). Powder X-ray data show that it is isostructural with MoO_2 (Magnéli & Andersson, 1955).

WO₂ was prepared by reduction of WO₃ (Koch Light Laboratories) in a static H_2/H_2O atmosphere, © 1979 International Union of Crystallography

with H_2/H_2O pressure ratio of 7.7:1, at 1023 K for 24 h. The product, a brown powder, was characterized by its powder X-ray pattern and the composition $WO_{2.00(1)}$ confirmed by its reducing power (Chaoin & Marion, 1963) and by thermogravimetric reduction.

The neutron powder profile was recorded on the diffractometer PANDA at AERE Harwell in the 2θ range 10 to 110° in steps of 0.1°. The sample (~10 g) was contained in a thin-walled vanadium can. The powder profile was recorded at room temperature with a neutron wavelength of 1.2615 Å, obtained by reflexion from the (511) planes of a Ge monochromator with a take-off angle of 70°.

MoO₂ has been the subject of a single-crystal X-ray investigation (Brandt & Skapski, 1967). The space group is $P2_1/c$ with specific absences 0k0, k = 2n + 1and h0l, l = 2n + 1. Both powder X-ray and powder neutron profiles for WO₂ may be indexed on this scheme, there being no evidence for the space group $P2_1$. Thus the method of least-squares profile refinement (Rietveld, 1969) was applied in the space group $P2_1/c$, with as starting parameters the atomic coordinates of MoO₂. This program minimizes the function χ^2 $=\sum_{i} w_{i} [y_{i}(\text{obs}) - cy_{i}(\text{calc})]^{2}$, where w_{i} is the weighting function, y_i is the number of counts at the point $2\theta_i$ and c is the scale factor. The scattering lengths were $b_{\rm w} =$ $0.48, b_0 = 0.580 \times 10^{-14}$ m (Bacon, 1972). The refinement included the scale factor, three halfwidth parameters, the zero-point correction, the lattice constants, nine positional parameters, three thermal parameters and the peak asymmetry parameter for peaks below 2θ $= 40^{\circ}$.

$$R_{\text{profile}} = 100 \left\{ \frac{\sum_{i} w_i [y_i(\text{obs}) - cy_i(\text{calc})]^2}{\sum_{i} w_i [y_i(\text{obs})]^2} \right\}^{1/2}$$

converged to 9.28 compared with 9.35 expected on purely statistical grounds. $R_I = 100 \sum |I_{obs} - cI_{calc}| / \sum I_{obs}$ was 6.08. Atom parameters are given in Table 1, and the agreement between observed and calculated profiles is shown in Fig. 1.

Discussion. Bond angles and distances are given in Table 2. A projection of the structure on (010) is given in Fig. 2. The bond lengths are derived from the X-ray lattice parameters.

The structural details of WO_2 and MoO_2 are very similar, both being of a monoclinically distorted rutile

Table 1. Atom parameters for WO₂

	x	У	z	B (Å ²)
w	0.2278 (11)	-0.0102 (14)	0.0111 (12)	0.19 (5)
O(1)	0.1119 (11)	0.2186 (11)	0-2334 (8)	0.31 (7)
O(2)	0.3900 (9)	0.7024 (12)	0.2986 (9)	0.57 (8)

Fig. 1. Observed and calculated profiles for WO₂: ● observed; calculated. Upper trace: reflexions; lower trace: difference plot.

Table 2. Interatomic distances and angles in WO_2

(a) Interatomic distances (Å) (primed symbols represent atoms on an adjacent plane)

2.475 (2)	O1(1)-O1(4)	2.796 (2)
3.096 (2)	O1(1) - O2(1)'	2.750 (2)
	O1(2)-O2(3)'	2.706 (1)
	O1(1)-O2(4)	2.721 (1)
	O1(1)-O2(5)'	3.445 (1)
	O2(1)-O2(4)	2.792 (1)
hedron		
2.019 (2)	O1(1)-O1(2)	2.848 (1)
1.975 (2)	O1(1)–O2(3)	2.868 (2)
1.969 (1)	O1(1)-O1(3)	3.128 (1)
1.989 (2)	O1(1)–O2(1)	2.887 (2)
2.061 (2)	O2(1)–O2(3)	2.912 (2)
2.107(1)	O2(1)–O2(2)	2.870 (2)
	2.475 (2) 3.096 (2) hedron 2.019 (2) 1.975 (2) 1.969 (1) 1.989 (2) 2.061 (2) 2.107 (1)	$\begin{array}{ccccc} 2\cdot475\ (2) & 01(1)-O1(4) \\ 3\cdot096\ (2) & 01(1)-O2(1)' \\ & 01(2)-O2(3)' \\ & 01(1)-O2(4) \\ & 01(1)-O2(5)' \\ & 02(1)-O2(4) \end{array}$ hedron $\begin{array}{c} 2\cdot019\ (2) & 01(1)-O1(2) \\ 1\cdot975\ (2) & 01(1)-O2(3) \\ 1\cdot969\ (1) & 01(1)-O1(3) \\ 1\cdot989\ (2) & 01(1)-O2(1) \\ 2\cdot061\ (2) & 02(1)-O2(3) \\ 2\cdot107\ (1) & 02(1)-O2(2) \end{array}$

(b) Bond angles (°) (typical e.s.d. for angles = $0 \cdot 1^{\circ}$)

W(2)-W(1)-W(3) 173.9

Within WO ₄	octahedron
------------------------	------------

0			
Around W		Around O(1)	
O1(1)-W(1)-O2(2)	171.8	O1(2)-O1(1)-O2(3)	56.9
O1(2)-W(1)-O2(1)	173-2	O2(3)-O1(1)-O2(1)	60.8
O1(3) - W(1) - O2(3)	167.2	O2(1)-O1(1)-O1(3)	57.8
O1(1) - W(1) - O1(3)	103-3	O1(2)-O1(1)-O2(1)	87.2
O1(1)-W(1)-O1(2)	91.0		
O1(1)-W(1)-O2(1)	92.2	Around O(2)	
O1(1) - W(1) - O2(3)	88.0	O1(1)-O2(1)-O2(3)	59.3
O2(1) - W(1) - O1(3)	94.8	O2(2)-O2(1)-O2(3)	57.8
O2(1)-W(1)-O2(3)	90.6	O2(2)-O2(1)-O1(3)	55.8
O2(1)-W(1)-O2(2)	90-2	O2(2)-O2(1)-O1(1)	90.0
O2(3)-W(1)-O2(2)	84.1		
O2(3)-W(1)-O1(2)	83.5		

type, with the bond lengths in the WO₆ octahedra slightly longer (average W-O = 2.020, average Mo-O = 2.011 Å). This is consistent with the ionic radii of W⁴⁺ and Mo⁴⁺ (0.66 and 0.650 Å, respectively, Shannon, 1976). The important structural feature is the occurrence of alternately short and long W-W distances down the rutile chains (the *a* axis). This has been rationalized in terms of metal-metal bonds (Sleight, Hare & Sleight, 1968) and is also seen in other metal dioxides with rutile-related structures

Fig. 2. A projection of the structure of WO_2 on to the (010) plane.

such as VO₂, TcO₂ and NbO₂ (Rogers, Shannon, Sleight & Gillson, 1969) as well as in AlWO₄ (Doumerc, Vlasse, Pouchard & Hagenmuller, 1975) and GaWO₄ (Palmer, 1977).

There is no evidence for the space group $P2_1$ as suggested by Magnéli & Andersson (1955) from either the X-ray or neutron powder profiles: the symmetry and size of the unit cell of WO₂ are such that there would be no fully resolved peaks h0l, l = 2n + 1 in the 2θ range investigated. However, refinement was attempted in $P2_1$; no improvement in the agreement between observed and calculated profiles was seen, and indeed the atomic coordinates refined effectively to the symmetry-equivalent positions in $P2_1/c$.

The authors thank the Science Research Council for providing neutron beam facilities at AERE Harwell and for a CASE Research Studentship to DJP in conjunction with ICI Ltd., Mond Division.

References

- BACON, G. E. (for THE NEUTRON DIFFRACTION COM-MISSION) (1972). Acta Cryst. A28, 357–358.
- BRANDT, B. G. & SKAPSKI, A. C. (1967). Acta Chem. Scand. 21, 661–672.
- CHAOIN, C. & MARION, F. (1963). Bull. Soc. Chim. Fr. p. 212.
- DOUMERC, J. P., VLASSE, M., POUCHARD, M. & HAGENMULLER, P. (1975). J. Solid State Chem. 14, 141– 151.
- MAGNÉLI, A. & ANDERSSON, G. (1955). Acta Chem. Scand. 9, 1378–1381.
- PALMER, D. J. (1977). Part II Thesis, Oxford.
- Phase Diagrams for Ceramists (1969). 1969 Supplement. Columbus, Ohio: American Ceramic Society.
- RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- ROGERS, D. B., SHANNON, R. D., SLEIGHT, A. W. & GILLSON, J. L. (1969). *Inorg. Chem.* 8, 841–849.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751–767.
- SLEIGHT, T. P., HARE, C. R. & SLEIGHT, A. W. (1968). Mater. Res. Bull. 3, 437-444.

Acta Cryst. (1979). B35, 2201-2204

Dieuropium(III) Germanate Oxide

By Katsuo Kato, Masami Sekita and Shigeyuki Kimura

Mukizaishitsu Kenkyusho,* 1-1 Namiki, Sakura-mura, Niihari-gun, Ibaraki-ken 300-31, Japan

(Received 14 May 1979; accepted 4 June 1979)

Abstract. Eu₂(GeO₄)O, monoclinic, $P2_1/c$, a = 9.977 (7), b = 7.136 (4), c = 6.854 (4) Å, $\beta = 115.78$ (6)°, Z = 8, $D_m = 6.84$ (2), $D_x = 6.90$ Mg m⁻³. Crystals were prepared by melting a pre-sintered mixture of Eu₂O₃ and GeO₂ in an image furnace with a tungsten halogen lamp as heat source. The seven-coordination polyhedra of Eu³⁺ ions in a set of

0567-7408/79/092201-04\$01.00

equivalent sites form slabs parallel to (100) by edgesharing. These slabs are connected to the corrugated layers of the edge-shared polyhedra of sevencoordinated Eu^{3+} ions in other equivalent positions through common edges of the polyhedra and O–Ge–O bonds of the GeO₄ tetrahedra.

Introduction. Of the germanates and silicates of the rare-earth elements Ln_2XO_5 (Ln = Sc, Y, La, Ce, ..., © 1979 International Union of Crystallography

^{*} National Institute for Researches in Inorganic Materials.